Acta Crystallographica Section E

Structure Reports

 OnlineISSN 1600-5368

Chenguang Li, ${ }^{\text {a }}$ Jeremy R. Wolf, ${ }^{\text {a }}$
Daniel J. Dyer ${ }^{\text {a }}$ and Paul D. Robinson ${ }^{\text {b }}$
${ }^{\text {a }}$ Department of Chemistry and Biochemistry, Southern Illinois University at Carbondale, Carbondale, IL 62901-4409, USA, and
${ }^{\mathbf{b}}$ Department of Geology, Southern Illinois University at Carbondale, Carbondale, IL 62901-4324, USA

Correspondence e-mail: robinson@geo.siu.edu

Key indicators

Single-crystal X-ray study
$T=296 \mathrm{~K}$
Mean $\sigma(\mathrm{C}-\mathrm{C})=0.003 \AA$
R factor $=0.038$
$w R$ factor $=0.129$
Data-to-parameter ratio $=15.5$
For details of how these key indicators were automatically derived from the article, see http://journals.iucr.org/e.
(C) 2005 International Union of Crystallography Printed in Great Britain - all rights reserved

1-(4-Decylphenyl)pyridin-4(1H)-one

The title compound, $\mathrm{C}_{21} \mathrm{H}_{29} \mathrm{NO}$, forms infinite one-dimensional molecular chains via weak $\mathrm{C}-\mathrm{H} \cdots \mathrm{O}$ interactions. The hydrogen bonding may preclude the formation of $\pi-\pi$ interactions.

Comment

Liquid crystals (LCs) with large birefringence are potential building blocks for incorporation into electro-optic devices including a number of different flat panel display configurations (Kuo \& Suzuki, 2002). In addition, LCs are useful molecular units for applications utilizing polar order, such as photorefractivity (Marder et al., 1997), pyroelectricity (Lang \& Das-Gupta, 2000), and piezoelectricity (Pralle et al., 2000) in thin organic films (TOFs); such films require non-centrosymmetric architectures. We are interested in developing TOFs with polar order through supramolecular self-assembly approaches (Dyer, Wolf et al., 2003). With this goal in mind, hydrogen bonding (HB) emerges as an attractive building tool due to its robust binding strength, unique binding directionality, and dynamic reversibility. A series of molecules with the structure of HB-Donor••Linker••HB-Acceptor have already been designed and prepared (Landorf et al., 2002), and their self-assembly and optical properties are under current investigations (Dyer, Li et al., 2003). It has been shown that the HB strength and geometry will affect the ultimate microstructure and polar order in TOFs, thereby determining the corresponding macro-architecture and optical properties (Facchetti, Letizia et al., 2004; Facchetti, Annoni et al., 2004). A diverse range of HB units is therefore crucial for the design and optimization of such non-centrosymmetric HB-Donor••Linker••HB-Acceptor molecular structures. The compound 1-(4-decylphenyl)pyridin-4(1H)-one, (I), containing the highly polarizable $1 H$-pyridin-4-one heterocycle (hereafter referred to as C10A-pyridone), should exhibit highly anisotropic polarizability and calculations predict a large dipole moment (9.2 D). It is known that the $1 H$-pyridin-4-one heterocycle can participate in complex formation and intermolecular hydrogen bonding, therefore the pyridone moiety may prove useful in creating polar order in TOFs (Dyer et al., 1997).

(I)

The pyridone ring is planar, the maximum deviation from its least-squares plane being 0.005 (2) \AA (N1). The carbonyl O atom is coplanar with the pyridone ring, deviating from the ring plane by only -0.002 (2) \AA. The benzene ring of the

Received 17 December 2004 Accepted 21 December 2004 Online 8 January 2005

Figure 1
The molecular structure and atom-numbering scheme for (I), with displacement ellipsoids drawn at the 50% probability level.

Figure 2
Hydrogen bonding in (I). The weak $\mathrm{C}-\mathrm{H} \cdots \mathrm{O}$ bonds produce infinite molecular chains propagating in the b-axis direction. O and N atoms are colored red and blue, respectively. [Symmetry codes: (i) $1-x, \frac{1}{2}+y$, $\frac{1}{2}-z$; (ii) $1-x, y-\frac{1}{2}, \frac{1}{2}-z$; (iii) $x, 1+y, z$.]
aromatic core deviates rather more from planarity, the maximum deviation from its least-squares plane being $0.020(2) \AA(\mathrm{C} 7)$; the angle between the two least-squares planes is $50.39(9)^{\circ}$. The long alkyl tail, with an 'all-trans' conformation, is twisted away from the benzene ring [C8$\left.\mathrm{C} 9-\mathrm{C} 10-\mathrm{C} 13=175.2(2)^{\circ}\right]$ with a dihedral angle of $17.8(3)^{\circ}$ (C9-C10-C13-C14). In the crystal structure of the classic liquid crystal molecule 4-cyano-4'-octylbiphenyl (8CB) (Kuribayashi \& Hori, 1998), the dihedral angle between the biphenyl rings is $39.12(5)^{\circ}$, and the dihedral angle between

Figure 3
The molecular packing in (I). O and N atoms are colored red and blue, respectively; dashed lines represent hydrogen bonds.
the alkyl tail and the attached benzene ring is $34.92(8)^{\circ}$. The similarities between the aromatic core structure of C10Apyridone and 8 CB suggests that the $1 H$-pyridin-4-one heterocycle should be an excellent rigid core for incorporation into rod-shaped liquid crystals.

Analysis of the molecular packing demonstrates weak C$\mathrm{H} \cdots \mathrm{O}$ hydrogen-bonding interactions which form infinite polymeric chains along the b-axis direction as shown in Fig. 2. The $\mathrm{C}=\mathrm{O}$ acts as the HB acceptor, and the C 12 of the benzene ring as the HB donor. Such an asymmetric HB interaction, combined with the torsion between the pyridone and benzene rings, yields an asymmetric molecular geometry in the solid state even though the molecule itself is symmetrical. Details of the HB geometry are given in Table 2. The molecular packing, shown in Fig. 3, shows pairs of what appear to be potential $\pi-\pi$ interactions involving the pyridone rings arranged about the center of the unit cell. PLATON (Spek, 2003) calculations show that these parallel ring pairs are quite close together ($3.461 \AA$) when measured in a direction perpendicular to the planes. However, the slippage angle is 35.3°, which results in ca $2.45 \AA$ of slippage and a centroid-tocentroid distance of 4.2382 (13) \AA, values which appear to be out of the range of accepted $\pi-\pi$ interactions. These data suggest that the $\mathrm{C}=\mathrm{O}$ group of the pyridone ring could serve as an excellent HB acceptor, thus enabling robust interactions with HB donors such as benzoic acids and phenols.

Experimental

Chelidonic acid $(2.02 \mathrm{~g}, 10 \mathrm{mmol})$ and 4-decylaniline $(2.33 \mathrm{~g}$, 10 mmol) were dissolved in dimethyl sulfoxide (10 ml), the solution was heated to 423 K under argon for 1 h , then the reaction mixture was heated to 453 K for an additional 30 min until gas evolution
ceased. The mixture was cooled to room temperature, then distilled water (50 ml) was added and the mixture stirred overnight. The aqueous solution was extracted with chloroform. The combined organic layers were dried over anhydrous MgSO_{4}. The crude product was purified via column chromatography over silica gel (95/ $\left.5 \mathrm{CH}_{2} \mathrm{Cl}_{2}-\mathrm{MeOH}\right)$. The solid obtained after solvent evaporation was dissolved in MeOH and decolorized three times using activated charcoal. Pure crystals of compound (I) were obtained through recrystallization from toluene/hexane $(1.51 \mathrm{~g}, 4.85 \mathrm{mmol}, 48.5 \%$ yield). Single crystals of (I) were obtained by slow room-temperature evaporation of a dilute hexane/ $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ solution: $\mathrm{R}_{F}=0.42$ (95/5 $\mathrm{CH}_{2} \mathrm{Cl}_{2}-\mathrm{MeOH}$); m.p. $335 \mathrm{~K} ;{ }^{1} \mathrm{H}$ NMR ($300 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 7.57(d, J$ $=7.8 \mathrm{~Hz}, 2 \mathrm{H}), 7.30(d, J=8.7 \mathrm{~Hz}, 2 \mathrm{H}), 7.23(d, J=8.7 \mathrm{~Hz}, 2 \mathrm{H}), 6.48(d$, $J=7.5 \mathrm{~Hz}, 2 \mathrm{H}), 2.65(t, J=7.8 \mathrm{~Hz}, 2 \mathrm{H}), 1.63(p, J=8.1 \mathrm{~Hz}, 2 \mathrm{H}), 1.26$ $(m, 14 \mathrm{H}), 0.88(t, J=6.6 \mathrm{~Hz}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR $\left(75 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 178.9$, 143.7, 140.9, 139.2, 130.0, 122.6, 118.8, 35.3, 31.8, 31.3, 29.6, 29.5, 29.4, 29.3, 29.2, 22.6, 14.1. Anal calculated for $\mathrm{C}_{21} \mathrm{H}_{29} \mathrm{NO}: \mathrm{C} 80.98$, H 9.38, $\mathrm{N} 4.50 \%$; found: C $80.53, \mathrm{H} 9.47, \mathrm{~N} 4.51 \%$. EI MS $m / z=311.3\left(M^{+}\right)$. Quantum calculations were performed with Gaussian03W (Revision C.01) software (Frisch et al. 2004), at the DFT/UB3LYP level of theory with $6-31 G$ basis set; energies were calculated on the MP2 level. DSC examination was performed on a DSC821 ${ }^{\mathrm{e}}$ from METTLER TOLEDO with a heating and cooling rate of $10 \mathrm{~K} \mathrm{~min}^{-1}$.

Crystal data

$\mathrm{C}_{21} \mathrm{H}_{29} \mathrm{NO}$
$M_{r}=311.45$
Monoclinic, $P 2_{1} / c$
$a=19.4607$ (10) A
$b=10.5889$ (15) \AA
$c=9.0394(12) \AA$
$\beta=99.948(8)^{\circ}$
$V=1834.7$ (4) \AA^{3}
$Z=4$

Data collection

Rigaku AFC-5S diffractometer ω scans
Absorption correction: none
3484 measured reflections
3254 independent reflections
1521 reflections with $I>2 \sigma(I)$
$R_{\text {int }}=0.031$

Refinement

Refinement on F^{2}
$R\left[F^{2}>2 \sigma\left(F^{2}\right)\right]=0.038$
$w R\left(F^{2}\right)=0.129$
$S=0.99$
3254 reflections
210 parameters
H -atom parameters constrained

$$
\begin{aligned}
& D_{x}=1.128 \mathrm{Mg} \mathrm{~m}^{-3} \\
& \text { Mo K } \alpha \text { radiation } \\
& \text { Cell parameters from } 25 \\
& \quad \text { reflections } \\
& \theta=16.4-19.1^{\circ} \\
& \mu=0.07 \mathrm{~mm}^{-1} \\
& T=296 \mathrm{~K} \\
& \text { Prism, colorless } \\
& 0.43 \times 0.33 \times 0.19 \mathrm{~mm} \\
& \\
& \theta_{\max }=25.0^{\circ} \\
& h=-23 \rightarrow 22 \\
& k=-12 \rightarrow 0 \\
& l=0 \rightarrow 10 \\
& 3 \text { standard reflections } \\
& \text { every } 100 \text { reflections } \\
& \text { intensity decay: } 0.3 \%
\end{aligned}
$$

$$
w=1 /\left[\sigma^{2}\left(F_{o}^{2}\right)+(0.0574 P)^{2}\right]
$$

$$
\text { where } P=\left(F_{o}^{2}+2 F_{c}^{2}\right) / 3
$$

$(\Delta / \sigma)_{\max }<0.001$ 。
$\Delta \rho_{\text {max }}=0.14 \mathrm{e}^{\circ} \AA^{-3}$
$\Delta \rho_{\min }=-0.14 \mathrm{e}^{-3}$
Extinction correction: SHELXL97
Extinction coefficient: 0.0107 (15)

Table 1
Selected bond lengths (\AA).

$\mathrm{O} 1-\mathrm{C} 4$	$1.247(2)$	$\mathrm{N} 1-\mathrm{C} 7$	$1.441(2)$
$\mathrm{N} 1-\mathrm{C} 2$	$1.363(2)$	$\mathrm{C} 7-\mathrm{C} 12$	$1.380(3)$
$\mathrm{N} 1-\mathrm{C} 6$	$1.365(4)$	$\mathrm{C} 7-\mathrm{C} 8$	$1.379(3)$

Table 2
Hydrogen-bonding geometry $\left(\AA^{\circ},^{\circ}\right)$.

$D-\mathrm{H} \cdots A$	$D-\mathrm{H}$	$\mathrm{H} \cdots A$	$D \cdots A$	$D-\mathrm{H} \cdots A$
$\mathrm{C} 12-\mathrm{H} 12 \cdots \mathrm{O}^{\mathrm{i}}$	0.93	2.37	$3.279(3)$	166

Symmetry code: (i) $1-x, \frac{1}{2}+y, \frac{1}{2}-z$.
The rotational orientation of the methyl group was refined by the circular Fourier method available in SHELXL97 (Sheldrick, 1997). All H atoms were treated as riding with $\mathrm{C}-\mathrm{H}$ distances ranging from 0.93 to $0.97 \AA$ And $U_{\text {iso }}(\mathrm{H})$ values equal to 1.5 (methyl H atoms) or 1.2 (all other H atoms) times $U_{\text {eq }}$ of the parent atom.

Data collection: MSC/AFC Diffractometer Control Software (Molecular Structure Corporation, 1996); cell refinement: MSC/AFC Diffractometer Control Software; data reduction: PROCESS in TEXSAN (Molecular Structure Corporation, 1997); program(s) used to solve structure: SIR92 (Burla et al., 1989); program(s) used to refine structure: LS in TEXSAN and SHELXL97 (Sheldrick, 1997); molecular graphics: ORTEP-3 for Windows (Farrugia, 1997) and PLATON (Spek, 2003); software used to prepare material for publication: TEXSAN, SHELXL97 and PLATON.

References

Burla, M. C., Camalli, M., Cascarano, G., Giacovazzo, C., Polidori, G., Spagna, R. \& Viterbo, D. (1989). J. Appl. Cryst. 22, 389-393.

Dyer, D. J., Lee, V. Y. \& Twieg, R. J. (1997). Liq. Cryst. 23, 551-560.
Dyer, D. J., Li, C., Wolf, J., Landorf, C. \& Zhao, T. (2003). Polym. Preprints, 44, 713-714.
Dyer, D. J., Wolf, J., Li, C., Landorf, C., Brown, B., Maas, J., Conlin, E. \& Zhao, T. (2003). Polym. Preprints, 44, 578-579.

Facchetti, A., Annoni, E., Beverina, L., Morone, M., Zhu., P., Marks, T. J. \& Panani, G. A. (2004). Nature Mater. 3, 910-917.
Facchetti, A., Letizia, J., Yoon, M., Mushrush, M., Katz, H. E. \& Marks, T. J. (2004). Chem. Mater. 16, 4715-4727.

Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.
Frisch, M., Trucks, G., Schlegel, H., Scuseria, G., Robb, M., Cheeseman, J., Montgomery, J. Jr, Vreven, T., Kudin, K., Burant, J., Millam, J., Iyengar, S., Tomasi, J., Barone, V., Mennucci, B. et al. (2004). Gaussian03W. Revision C.01. Gaussian Inc., Wallingford, CT 06492, USA.

Kuribayashi, M. \& Hori, K. (1998). Acta Cryst. C54, 1475-1477.
Kuo, Y. \& Suzuki, K. (2002). Mater. Res. Soc. Bull. 27, 859-863.
Landorf, C., Wolf, J., Li, C., Xie, W., Jacobsen, J., Simpson, J. \& Dyer, D. J. (2002). In Organic Thin Films for Photonic Applications; Trends in Optics and Photonics Series, Vol. 64, edited by J. P. Armistead, J. R. Heflin, A. K.-Y. Jen and R. A. Norwood, pp. 145-152. Washington, DC: Optical Society of America.
Lang, S. B. \& Das-Gupta, D. K. (2000). Ferroelectrics Rev. 2, 217-354.
Marder, S. R., Kippelen, B., Jen, A. K.-Y. \& Peyghambarian, N. (1997). Nature (London), 388, 845-851.
Molecular Structure Corporation (1996). MSC/AFC Diffractometer Control Software. MSC, 3200 Research Forest Drive, The Woodlands, TX 77381, USA. (Present address: 9009 New Trails Drive, The Woodlands, TX 77381, USA.)
Molecular Structure Corporation (1997). TEXSAN. MSC, 3200 Research Forest Drive, The Woodlands, TX 77381, USA. (Present address: 9009 New Trails Drive, The Woodlands, TX 77381, USA.)
Pralle, M. U., Urayama, K., Tew, G. N., Neher, D., Wegner, G. \& Stupp, S. I. (2000). Angew. Chem. Int. Ed. 39, 1486-1489.

Sheldrick, G. M. (1997). SHELXL97. University of Göttingen, Germany.
Spek, A. L. (2003). J. Appl. Cryst. 36, 7-13.

